
Physics 232 – Thermal Waves

last modified January 11, 2022

Purpose

In this experiment you will investigate heat flow in a “one-dimensional” rod. You will use Fourier

analysis (Fourier transforms) to examine the frequency content of thermal waves has they propagate

down the length of a copper rod. From this analysis you will determine the thermal diffusivity of

copper. You will also observe the phase shift (or phase velocity) of the thermal oscillations as they

propagate down the length of the copper rod. The phase shift data can also be used to extract the

thermal diffusivity of copper.

Introduction

Consider a cylindrical rod which has a temperature gradient along its length as in Fig. 1. A heat
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Figure 1: Heat flow in a cylindrical rod.

flux J (heat Q per unit area A per unit time, [J ]=Jm−2s−1) flows from the hot end of the rod to the

cold end. The constant of proportionality that relates the heat flux and the temperature gradient
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is the thermal conductivity κ, such that, in one dimension:

J = −κ
∂T

∂x
. (1)

The negative sign indicates that the flow of heat is in the opposite direction of the temperature

gradient. The heat capacity is a material property that measures how much heat is required to

change the temperature of that material. In terms of the specific heat per unit volume which we

denote cv:

V cv =
∂Q

∂T
, (2)

where V is the volume of material. Consider the infinitesimal section of cylinder in Fig. 1 that has

volume A∆x. In this case:

∆Q = A∆xcv∆T. (3)

Dividing by a small time interval ∆t and taking the limit ∆t → 0 we can write:

∂Q

∂t
= A∆xcv

∂T

∂t
. (4)

Recalling that the heat flux (Eq. 1) is the rate of heat flow per unit area we can express the net

heat flow into the disc of the cylinder as:

∂Q

∂t
= A [Jin − Jout] = A [J(x, t)− J(x+∆x, t)] . (5)

Equating Eqns 4 and 5 and dividing by ∆x gives:

cv
∂T

∂t
= −J(x+∆x, t)− J(x, t)

∆x
= −∂J

∂x
, (6)

where the second equality holds for infinitesimal ∆x. Finally substituting Eq. 1 for J results on the

1-D heat equation:
∂2T

∂x2
=

1

α

∂T

∂t
, (7)

where α ≡ κ/cv is the thermal diffusivity.

Fourier Series

Recall from calculus that any piecewise smooth function can be written in terms of an infinite sum

of cosine and sine waves:

f(x) = a0 +
∞∑
n=1

(an cosnx+ bn sinnx), (8)
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where:

a0 =
1

2π

∫ π

−π

f(x) dx (9a)

an =
1

π

∫ π

−π

f(x) cosnx dx (9b)

bn =
1

π

∫ π

−π

f(x) sinnx dx. (9c)

See the supplemental information on the course website for a review of the Fourier series.

In this experiment, a switch is used to periodically turn a heater that is attached to one end of a

copper rod off and on. This results in a square wave temperature oscillation at that end of the rod

(at x = 0, for example). You will use Fourier analysis and the heat equation (Eq. 7) to analyze how

this temperature oscillation evolves as it propagates along the length of the copper rod.

At any position x, the temperature of the rod is given by T (x, t) = TDC(x) + T̃ (x, t) where TDC is

the average temperature and T̃ describes the temperature oscillation. In this experiment we will

focus on oscillating part of the temperature. We’ve already argued that at x = 0 the temperature

oscillation will be a square wave which, when written as a Fourier series, is:

T̃ (0, t) =
∑
n odd

4T0

nπ
sin

2nπt

τ
, (10)

where the square wave has amplitude T0 and period τ (τ is used to denote the period since T is

reserved for temperature). See the supplemental material for a review of the Fourier series of a

square wave.

Now we are in a position to look for a solution to the 1-D heat equation subject to the boundary

condition (Eq. 10). The heat equation will not introduce new frequencies so we assume that a

solution that will satisfy the boundary condition will be of the form:

T̃ (x, t) =
∑
n odd

An(x) sin(ωnt− knx), (11)

where we allow for a position-dependent phase factor knx. The goal is now to determine An(x), ωn,
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and kn. Start by evaluating the following derivatives:

∂T̃

∂t
=

∑
n odd

An(x)ωn cos(ωnt− knx)

∂2T̃

∂x2
=

∑
n odd

{[
∂2An(x)

∂x2
− An(x)k

2
n

]
sin(ωnt− knx)− 2kn

∂An(x)

∂x
cos(ωnt− knx)

}
.

Substituting these results into the heat equation and equating the coefficients of the cosine and sine

terms results in:

−2kn
∂An(x)

∂x
=

ωn

α
An(x) (13a)

∂2An(x)

∂x2
= k2

nAn(x) (13b)

Equation 13a can be solved to yield An(x) = B exp(ωnx/2αkn) which can then be substituted in

Eq. 13b. Making this substitution relates kn to ωn:

kn =

√
ωn

2α
. (14)

Returning to Eq. 11 and inserting the solution for An(x) gives:

T̃ (x, t) =
∑
n odd

B exp

(
−
√

ωn

2α
x

)
sin

(
ωnt−

√
ωn

2α
x

)
. (15)

Finally, setting x = 0 and comparing to the boundary condition given in Eq. 10 sets B and ωn:

B =
4T0

nπ
(16)

ωn =
2nπ

τ
(17)

T̃ (x, t) =
∑
n odd

4T0

nπ
exp

(
−
√

ωn

2α
x

)
sin

(
ωnt−

√
ωn

2α
x

)
. (18)

Notice a couple of features Eq. 18. First, T̃ (x, t) contains all of the same frequencies ωn as T̃ (0, t), but

the amplitude of each frequency is attenuated by a different exponential factor and each frequency

has a different phase factor. Second, consider what happens when x ≫
√

2α/ωn. In this case, the

first term in the sum dominates and the temperature oscillation approaches a pure sine wave.
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Fourier Transforms

A Fourier transform can be used to extract the amplitude of all frequencies contained in a given

signal. That is, the Fourier transform of a signal measured in the time domain [y(t)] is the same

signal but in the frequency domain [Y (f)]. For example, Fig. 2 shows the Fourier transforms of a

square wave, a triangle wave, and a sawtooth signal. Notice that these signals contain only integer

multiples of the fundamental frequency f0. The square and triangle waves have only the odd integer

multiples, but with different relative amplitudes. The sawtooth wave contain both even and odd

multiples of f0. What would the Fourier transform of a pure sine wave look like?

Pre-lab Assignment

You will use Python to take Fourier transforms of your measured data. One of the Python note-

books in the supplemental material show you how to take Fourier transforms in using a Python

module/function. (A separate Python notebook shows you how to convert the measured resistances

to temperature and remove the average background signal.)

Your assignment is to modify the Python notebook (called “Thermal waves FFT.ipynb”) to take

the Fourier transform of the square wave data that is also included as part of the supplemental

material. Don’t do the resistance→temperature conversion to the square wave data. Just take the

Fourier transform and plot it. What is the fundamental frequency of the square wave? What other

frequencies are in the Fourier transform? Do the ratio of the amplitudes of the different frequency

components agree with what you expect?

PHYS 232 5 Thermal Waves



Modern Physics Laboratory

Figure 2: Fourier transforms of a square wave, triangle wave, and sawtooth signal.
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Experiment

The apparatus is a long copper rod with holes drilled at various location into which thermometers

can be inserted to monitor the temperature. The thermometers are called thermistors and are

resistors whose resistance depends sensitively on temperature. The thermistor calibration data is

part of the supplemental material. A heater is inserted into one end of the copper rod and it is

powered using a variac (variable 60 Hz power supply). Power to this heater is turned off and on

periodically using a relay (essentially a switch) controlled by a function generator.

Start with the thermistors in the three holes closest to the heater. Set the variac to ≈ 90 V (DO

NOT TOUCH THE TERMINALS OF THE RELAY) and the function generator to a ≈ 0.005 Hz

square wave. You will use three Agilent 34401A multimeters to measure the resistance of the three

thermistors. The multimeters will be controlled using a computer program written using LabVIEW.

The program will write the data to a file which you can then analyze using Python. Set the program

to record the thermistor resistances every two seconds.

Analysis

We want to analyze the temperature oscillation and not the transient behaviour. Remove the part

of the data over which the average temperature changes significantly. Next subtract the average

temperature from the data. You should now have a temperature oscillation that is centred on zero.

Take the Fourier transform of the data so that you can examine the frequency profile of the tem-

perature oscillations. Plot the Fourier transform and observe the different frequencies contained in

the signal and their relative amplitudes. How do these features change with distance x from the

heater? Use the amplitude of the fundamental frequency as a function of x to determine the thermal

diffusivity α of copper. Your analysis needs error estimates and units! Does your final value for

α agree with the expected value? Could you also determine α from the phase of the signals as a

function of x?
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